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Integration by substitution (or change of variable)
Asked to determine x x dx48 (3 – 1) ,2 3∫  and noticing that 48x(3x2 - 1)3 is of the form f ′(x) [f (x)]n, except 

for some scalar multiple, we could try

 y = (3x2 - 1)4

in which case 
dy
dx

 = (4)(3x2 - 1)3(6x)

 = 24x (3x2 - 1)3

Thus  x x dx48 (3 – 1)2 3∫  = 2(3x2 - 1)4 + c.

Alternatively we could make a suitable substitution, in this case u = 3x2 - 1, to change the variable 
involved from x to u, as follows.

If u = 3x2 - 1  then 
du
dx

 = 6x

Thus x x dx48 (3 – 1)2 3∫  = x x
dx
du

du48 (3 – 1)2 3∫
 = xu

x
du48

1
6

3∫  We do not express the 48x in 
terms of u because we can see 
the 48x and the 6x cancelling. = u du8 3∫

 = 2u4 + c

 = 2(3x2 - 1)4 + c   as before.

In the example above, this method of substitution, or change of variable, holds no great advantage over 
our initial ‘trial and adjustment’ method, provided of course that we do notice the suitability of trialling 
(3x2 - 1)4. However we will meet situations for which an initial sensible trial may not be at all obvious 
but making a suitable substitution does yield a solution. The next two examples are of this type.
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EXAMPLE 1

Use the substitution u = 2x - 3 to determine x x dx56 (2 3) .5∫ −

Solution

If  u = 2x - 3  then 
du
dx

 = 2

Thus x x dx56 (2 3)5∫ −  = x x
dx
du

du56 (2 3)5∫ −

 = ∫ +



56

3
2

1
2

5u
u du

 = u u du(14 42 )6 5∫ +

 = 2u7 + 7u6 + c

 = u6(2u + 7) + c

 = (2x - 3)6(4x + 1) + c

EXAMPLE 2

Use the substitution u = x - 2 to determine 
x

x
dx

6
2

.∫ −

Solution

If  u = x - 2  then  
du
dx

 = 1.

Thus 
x

x
dx

6
2∫ −

 = 
x

x
dx
du

du
6

2∫ −

= 
u

u
du

6( 2)
1∫ ( )+

= u u du(6 12 )
1
2

1
2∫ +

−

= u u c4 24
3
2

1
2+ +

 = u u c4 ( 6)
1
2 + +

 = x x c4 2 ( 4)− + +

∫ ⋅

−











⋅ − ⋅ +

6 x
x 2

dx

4 x 2 (x 4)
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Note • In the previous examples, the final answers are given in terms of the variable given in the 
question (x in the previous examples), not in terms of the variable introduced to aid the 
integration (u in the previous examples).

• The replacement of ‘dx’ by 
dx
du

du  in these examples can be thought of as being reasonable 

by thinking of the ‘du’s cancelling. However this is not really the case because 
dx
du

 is not a 
fraction, it is the limit of a fraction.

 A more formal proof of the fact that if f (x) = g(u) then

f x dx g u
dx
du

du( ) ( )∫ ∫=

 is not included here.

Exercise 9A

Determine the following integrals using the suggested substitution.

 1 x x dx60 ( – 3) ,2 5∫  u = x2 - 3 2 x x dx80 (1 – 2 ) ,3∫  u = 1 - 2x

 3 x x dx12 (3 1) ,5∫ +  u = 3x + 1 4 x x dx6 (2 – 1) ,2 5∫  u = 2x2 - 1

 5 x x dx12 (3 1) ,2 5∫ +  u = 3x2 + 1 6 x x dx3 ( – 2) ,5∫  u = x - 2

 7 x x dx20 (3 – ) ,3∫  u = 3 - x 8 x x dx4 (5 – 2 ) ,5∫  u = 5 - 2x

 9 x x dx20 (2 3) ,3∫ +  u = 2x + 3 10 x x dx18 3 1 ,∫ +  u = 3x + 1

 11 x

x
dx

6

3 5
,

2∫ +
 u = 3x2 + 5 12 x

x
dx

3
1 2

,∫ −
 u = 1 - 2x

 13 x x dx8sin 2 cos 2 ,5∫  u = sin 2x 14 x x dx27cos 3 sin 3 ,7∫  u = cos 3x

 15 x x dx6 sin ( 4) ,2∫ +  u = x2 + 4 16 x x dx(4 3)(2 1) ,5∫ + +  u = 2x + 1
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Exercise 9B

Determine the following integrals using any appropriate method.

 1 x x dx( sin 3 )∫ +   2 dx2∫

 3 x dxsin 8∫  4 x x x x dx(cos sin )(cos – sin )∫ +

 5 x x
x

dx
2

∫ +
 6 x x dx4 sin ( )2∫

 7 x x dx8 sin ( – 3)2∫  8 x dx24 1 3∫ +

 9 x x dx15 1 3∫ +  10 x x dxsin 2 cos 24∫

 11 x x dx6 (2 7)5∫ +  12 x dx6(2 7)5∫ +

 13 x dx(3 – 2)2∫  14 x x dx4 (3 – 2)2 7∫

 15 x x dx(cos sin 2 )∫ +  16 x x dx6 (3 – 2)7∫

 17 x dx∫  18 
x

dx
6

1 2∫ +

 19 x
x

dx
6

1 2∫ +
 20 x x x dx( 1) (2 1)2 8∫ + + +

 21 x x dx24 sin (  3)2∫ +  22 x x dx(2 1) 53∫ + −

 23 x
x

dx
( 5)5

∫ +
 24 x dx4(2 – 1)5∫

 25 x x dx4 (2 – 1)5∫  26 x x dxcos 6 sin 63∫

 27 x

x
dx

6

32∫ −
 28 x x dxsin 2 cos 2∫

29 x x dx8 (2 – 1)2 5∫
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Definite integrals and the change of variable method
If the change of variable method is used to evaluate definite integrals, care needs to be taken with the 
upper and lower limits, as shown in the next example.

EXAMPLE 3

Use the substitution u = 2x + 1 to determine 
x

x
dx

8
2 1

.
0

4

∫ +

Solution

If u = 2x + 1  then  
du
dx

 = 2.

Thus ∫ +
8

2 10

4 x
x

dx  = 
x

x
dx
du

du
x

x 8
2 10

4

∫ +=

=

= 
u

u
du

u

u 4( 1) 1
21

9

∫ −
=

=

= u u du(2 2 )
1
2

1
2

1

9

∫ −
−

= −












4
3

4

3
2 1

2

1

9

u
u

 = 26
2
3

∫ +

8x
2x 1

dx

80
3

0

4
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Exercise 9C

Determine the following definite integrals using the suggested substitution and showing full algebraic 
reasoning. Confirm each answer using a graphic calculator.

 1 x dx16(2 1) ,3

0

1

∫ +  u = 2x + 1

 2 x x dx16 (2 1) ,3

0

1

∫ +  u = 2x + 1

 3 x
x dx

6
25

( 5) ,4

0

1

∫ +  u = x + 5

 4 x x dx12sin cos ,5

0

2∫
π

 u = sin x

 5 x
x

dx
3

5 6
,

2

6

∫ +
 u = 5x + 6

 6 x
x

dx
3
1

,
2

5

∫ +
−

 u = x - 1

 7 The graph on the right is that of the function

y = 
x
4

2 1
.

+

Performing any integration using the substitution  
u = 2x + 1, determine the area under the curve from  
x = 0 to x = 4.

 8 The graph on the right is that of the function

y = 6x(x - 3)3.

Performing any integration using the substitution 
u = x - 3, determine the area enclosed by the 
curve and the x-axis.

(0, 4)

y

x−2 2 4 6 8 10
−2

2

4

6

8

=
+

y
x
4

2 1

(3, 0)

y = 6x(x − 3)3

(0, 0)

5

y

x

−80

−40

40

80

120
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Use of trigonometric identities to assist integration
Some integrations are best performed by first rearranging the function to be integrated using some of 
the trigonometric identities we were reminded of in the Preliminary work section at the beginning of 
this unit. The examples that follow demonstrate such use.

In particular, note carefully the techniques for finding the antiderivatives of 

sinn x and cosn x 

as demonstrated in  example 4,   for when n is odd, and the technique ensures that  
some terms of the form f ′(x) [f (x)]k arise,

 and in example 5,  for when n is even, and the technique uses the 
 trigonometric identity cos 2x = 2 cos2 x - 1, 

rearranged as cos2 x = 
x1 cos 2

2
.

+

EXAMPLE 4

Find the antiderivative of sin5 x.

Solution
 sin5 x = (sin x)(sin4 x) 
 = (sin x)(1 - cos2 x)2 

 = (sin x)(1 - 2 cos2 x + cos4 x) 
 = sin x - 2 sin x cos2 x + sin x cos4 x

To find the antiderivative, try y = cos x + cos3 x + cos5 x

then 
dy
dx

 = –sin x - 3 cos2 x sin x - 5 cos4 x sin x

Thus if y = -cos x + x x
2
3

cos
1
5

cos3 5−

then, as required, 
dy
dx

 = sin x - 2 sin x cos2 x + sin x cos4 x.

The required antiderivative is x x x ccos
2
3

cos
1
5

cos .3 5− + − +

Does your calculator give this answer when asked for x dxsin5∫ ?

If it gives an answer that looks different to that shown above are they in fact equivalent? Investigate.

WS
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EXAMPLE 5

Find the antiderivative of cos4 x.

Solution
 cos4 x = (cos2 x)2

 = 
x1 cos 2

2

2+





 = 
x x1

4
2cos 2

4
cos 2

4

2

+ +

 = 
x x1

4
cos 2

2
1 cos 4

8
+ + +

 = 
x x3

8
cos 2

2
cos 4

8
+ +

The required antiderivative is x
x x

c
3
8

sin 2
4

sin 4
32

.+ + +

Again check to see if this is what your calculator gives when asked for x dxcos .4∫

EXAMPLE 6

Use the fact that sin A cos B = A B A B
1
2

[sin ( ) sin ( – )]+ +

to determine  x x dxsin 5 cos3∫
Solution

 sin 5x cos 3x = x x x x
1
2

[sin (5 3 ) sin (5 – 3 )]+ +

 = x x
1
2

sin (8 )
1
2

sin (2 )+

Thus x x dxsin 5 cos3∫  = x dx x dx
1
2

sin (8 )
1
2

sin (2 )∫ ∫+

 = x x c
1

16
cos (8 )

1
4

cos (2 )− − +



ISBN 9780170395274 9. Integration techniques and applications 225

Before proceeding to the next example recall first the derivative of tan x:

 y = tan x

 = 
x
x

sin
cos

By the quotient rule 
dy
dx

 = 
− −(cos )(cos ) (sin )( sin )

cos2
x x x x

x

 = 
x x

x
cos sin

cos

2 2

2
+

 = 
x

1
cos2

 = sec2 x .

Thus 
d
dx

 (tan x) = sec2 x .

EXAMPLE 7

Determine   x dxtan .2∫
Solution
The technique with this integration is to use the identity  tan2 x + 1 = sec2 x

 x dxtan2∫  = x dx(sec 1)2∫ −

 = x dx dxsec 12∫ ∫−

 = tan x - x + c

Exercise 9D

 1 Use the fact that cos A cos B = A B A B
1
2

[cos ( ) cos ( – )]+ +

to determine  x x dxcos5 cos 4 .∫

 2 Use the fact that sin A sin B = A B A B
1
2

[cos ( – ) – cos ( )]+

to determine  ∫ sin 7 sin .x x dx
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Find the antiderivative of each of the following. 
(Note: Not all of the expressions need rearranging.)

 3 sin4 x cos x 4 6 sin3 x cos x

 5 sin3 x 6 cos3 x

 7 cos5 x 8 cos2 x

 9 sin2 x (Hint: cos 2A = 1 - 2 sin2 A.)  10 8 sin4 x

 11 cos2 x + sin2 x 12 cos2 x - sin2 x

 13 sin3 x + cos2 x 14 2 sin x cos x

 15 sin3 x cos2 x 16 cos3 x sin2 x

 17 tan2 3x 18 1 + tan2 x

 19 x
x

x
x

sin
1 sin

sin
1 sin−

×
+

 20 sec2 x tan4 x

 21 The graph shown below shows the function y = x + cos2 x - sin2 x, for –π ≤ x ≤ 3π.

y

x−π π 2π 3π

−3

5

10

Determine the area under the curve y = x + cos2 x - sin2 x from x = 0 to x = 2π.

 22 A particle moves such that its velocity vector, v m/s, at time t seconds is given by

 v = 4 sin2 t i + tan2 t j  t(0
2

).≤ ≤ π

Find a  an expression for the position vector of the particle, r(t) metres, at time t seconds given 
that when t = 0, r = 3i + j.

 b the position vector of the particle when t = 
4

.
π
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Integration to give logarithmic functions
It is assumed that from your study of Mathematics Methods Unit Four you are now familiar with the idea 
of logarithmic functions. In particular you will have encountered, or soon will encounter, the fact that:

Any algebraic fraction for which the numerator is the derivative of the denominator will 
integrate to give a natural logarithmic function.

x
dx

1∫  = ln x + c.   
f x
f x

dx
( )
( )∫ ′

 = ln f (x) + c.

In the real number system the logarithmic function ln x is only defined for x > 0. Thus the integral 
above left only has meaning for x > 0 and above right only for f (x) > 0. In the treatment of logarithmic 
functions in Mathematics Methods Unit Four, consideration of integrals of the form

f x
f x

dx
( )
( )∫ ′

are restricted to f (x) > 0. However, the companion text for that unit, does say:

Suppose we were asked to determine 
x

dx
1∫  for x < 0.

Writing the answer as ln x + c would present a problem because we would then be faced with the 
logarithm of a negative number.

However, this situation is avoidable if, for x < 0, we were to write 
x

dx
1∫  as 

x
dx

1
,∫ −

−
 for which the 

answer is ln(–x) + c.

Thus we could say that  for x > 0, 
x

dx
1∫  = ln x + c,

 and for x < 0, 
x

dx
1∫  = 

x
dx

1∫ −
−

 = ln(–x) + c.

Combining these two statements using the absolute value gives

   
x

dx
1∫  = x cln .+  x ≠ 0.

• In Mathematics Methods Unit Four this point was mentioned to explain why your calculator may, 

when asked to determine 
x

dx
1

,∫  display an answer that includes the absolute value.

• In this Mathematics Specialist unit we will use the more general results:

 
x

dx
1∫  = x cln .+  x ≠ 0.

 
f x
f x

dx
( )
( )∫ ′

 = f x cln ( ) .+  f (x) ≠ 0.

WS
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EXAMPLE 8

Find each of the following integrals.

a 
x

dx
14

2 1∫ −
 b x

x
dx

6
12∫ +

Solution
a Noticing that the numerator is a scalar multiple of the derivative of the denominator, we 

expect the answer to involve xln 2 1 .−

 
x

dx
14

2 1∫ −
 = x c7 ln 2 1 .− +  (See first note below.)

b Noticing that the numerator is a scalar multiple of the derivative of the denominator we 
expect the answer to involve xln 1 .2 +

 
x

x
dx

6
12∫ +

 = x c+ +3ln 1 .2  (See second note below.)

Note • Using logarithmic laws we could write the answer to part a as follows:

 x c7 ln 2 1− +  = x c7 ln(2 0.5 )− +
  = x c+ − +7 ln 2 7 ln 0.5

  = x − +7 ln 0.5  a constant.

 • With (x2 + 1) positive for all x the answer to part b could be written simply as 3 ln (x2 + 1) + c.

EXAMPLE 9

Find each of the following definite integrals.

a 
x

dx
1

2

3

∫  b 
x

dx
1

.
3

2

∫−

−

Solution

a 
x

dx
1

2

3

∫  = xln
2

3   b 
x

dx
1

3

2

∫−

−
 = xln

3

2 −
−

  = ln 3 - ln 2  = ln 2 - ln 3

  = ln 1.5  = –ln 1.5

Note • That the part b answer above is the negative of the part a answer  

should come as no surprise when we consider the graph of y = 
x
1

.

y

x
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• Definite integrals of the form 
f x
f x

dx
a

b ( )
( )∫ ′

 are undefined if, for some value of x in the 

interval a ≤ x ≤ b, f (x) = 0.

 For example:  
x

dx
1

1

2

∫−
 is undefined.  ∫ − −

1
( 2 3)22

5

x x
dx  is undefined.

 How does your calculator respond when asked to find these definite integrals?

EXAMPLE 10

Find each of the following integrals.

a x
x

dx
2

1∫ +
 b x

x x
dx

2 5
( 1)∫ +

+

Solution
a First rearrange the improper fraction:

 
x

x
2

1+
 = 

x
x

2( 1) 2
1

+ −
+

 = 
x

2
2

1
−

+

 Thus 
x

x
dx

2
1∫ +

 = dx
x

dx2
2

1∫ ∫−
+

 = x x c2 2ln 1 .− + +

b First express 
x

x x
2 5
( 1)

+
+

 in what we call partial fractions, as shown below.

 We write 
x

x x
2 5
( 1)

+
+

 = 
A
x

B
x 1

+
+

  = 
A x Bx

x x
( 1)

( 1)
+ +

+
 Hence 2x + 5 = A(x + 1) + Bx

 from which 2 = A + B  and  5 = A.

 Thus  A  = 5  and  B = –3.

 
x

x x
dx

2 5
( 1)∫ +

+
 = 

x
dx

x
dx

5 3
1∫ ∫−

+
 = x x c5ln 3ln 1 .− + +
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More about partial fractions
When expressing an algebraic fraction as partial fractions (as in part b of the previous example) the 
procedure, and the expression we use, depends on the nature of the initial fraction.

• If the fraction is improper, i.e. if the order of the numerator is equal to or greater than the order 
of the denominator, rearrange the fraction. (As in part a of the previous example.)

Now that the only fractions are ‘proper’ consider the nature of the denominator:

• Denominator has linear factors.

 For example 
x

x x
4 3

( 3)(2 1)
.

−
+ +

 Use 
A

x
B

x( 3) (2 1)
.

+
+

+

• Denominator with a quadratic factor (that does not factorise).

 For example 
x x

x x
7 2 5

( 1)( 1)
.

2

2
− +

− +
 Use 

A
x

Bx C
x( 1) ( 1)

.2−
+ +

+

• Denominator with a repeated linear factor.

 For example 
x x

x x
2(3 3 10)
( 3)( 1)

.
2

2
+ −

+ −
 Use 

A
x

B
x

C
x( 3) ( 1) ( 1)

.2+
+

−
+

−

We do not need a 
Cx D
x( 1)2

+
−

 term because 
Cx D
x( 1)2

+
−

 = 
C x C D

x
( 1)

( 1)2
− + +

−

 = 
C

x
C D
x( 1) ( 1)2−

+ +
−

Some calculators can express fractions in terms of partial  
fractions, as the display on the right suggests.

Try to obtain these same results yourself, 
algebraically, using the methods outlined above.

Thus 
x

x x
dx

4 3
( 3)(2 1)∫ −

+ +
 = x x cln 2 1 3ln 3 .− + + + +

 
x x

x x
dx

7 2 5
( 1)( 1)

2

2∫ − +
− +

 = x x cln( 1) 5 ln 1 .2 + + − +

 
x x

x x
dx

2(3 3 10)
( 3)( 1)

2

2∫ + −
+ −

 = x x
x

cln 3 5 ln 1
2

( 1)
.+ + − +

−
+

WS
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expand 4x 3
(x 3)(2x 1)

, x

2
(2 x 1)

3
(x 3)

expand 7x 2x 5
(x 1)(x 1)

, x

2 x
x 1

5
x 1

expand 2(3x 3x 10)
(x 3)(x 1)

, x

1
x 3

5
x 1

2
(x 1)

2

2

2

2

2

2

−
+ +







−
⋅ +

+
+

− +
− +











⋅
+

+
−

+ −
+ −











+
+

−
−

−
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Exercise 9E

Determine the following integrals.

 1 
x

dx
7∫  2 x

x
dx3

42∫ −



  3 x

x
dx

8
62∫ +

 4 x dxtan 2∫  5 x
x

dx
2∫ +

  6 x
x

dx
2∫ +

 7 x
x

dx
2 3∫ −

  8 x
x

dx
2 3∫ −

  9 x x
x

dx
4 1

3

2

∫ + +
+

 10 x
x x

dx
5 3
( 1)∫ +

+
  11 x

x x
dx

4 7
( 2)( 3)∫ −

+ −
 12 x x

x x
dx

5 2 18
( 1)( 6)

2

2∫ − +
− +

 

 13 x x
x x x

dx
7 8 4

( 1)( 1)

2

2∫ + −
+ + −

 14 x x
x x

dx
5 10 3
( 1)( 1)

2

2∫ − −
+ −

 15 x x
x x

dx
8 44 25
(2 1)( 3)

2

2∫ − +
+ −

 16 The graph on the right shows

y = 
x

x 2−
  and  y = 

x
x
11

2
.2 +

Prove algebraically that the small region 
enclosed by these curves has an area of 

5
7
2

ln 6− +



  square units.

y

x

=
+

y
x

x
11

22

=
−

y
x

x 2
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Volumes of revolution
Suppose that we take the area under y = f (x), from x = a to x = b,  
and rotate it about the x-axis one complete revolution (see diagram).

How could we determine the volume of the solid so formed?

The answer is to approach the problem in the same way as we did 
when considering area: divide the shape up into a large number of 
pieces each of thickness δx.

One such piece is shown in the diagram on the right.

This will be, approximately, a circular disc of thickness δx and  
radius y. Hence its volume ≈ πy2 δx.

Thus, total volume = y x
x

x a

x b

∑ π δ
δ →

=

=

lim
0

2

 = y dx
a

b
2∫ π

EXAMPLE 11

Find the volume of the solid formed when the area enclosed by the curve y = x2, the x-axis and the 
line x = 3 is rotated through one revolution about the x-axis.

Solution
The solid involved can be seen in the diagram:

Required volume = y dx2

0

3

∫ π

 = x dx( )2 2

0

3

∫ π

 = x dx4

0

3

∫ π

 = 
243

5
π

 units3

(Does your calculator have any built-in routines for such a calculation? Investigate.)

Rotation about the y-axis
To determine the volume of an object formed by rotating an area made  
with the y-axis, about the y-axis, we again consider a small circular disc, 
this time of thickness δy and radius x, see diagram.

Required volume = x y
y

y a

y b

lim
0

2∑ π δ
δ →

=

=

 = x dy
a

b
2∫ π

WS

Solids of revolution

y

y

xb

δx

a

y

xb

y = f (x)

a

y

x

x 
= 

3 y = x2

y

x

x
a

b

δy

y = f (x)
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Exercise 9F

For some of the questions in this exercise, evaluate the definite integrals using your calculator and for 
others show full algebraic reasoning to determine exact answers.

 1 Find the volume of the solid formed when the area enclosed by y = x2, the x-axis and the line x = 2 
is rotated through one revolution about the x-axis.

 2 Find the volume of the solid formed when the area enclosed by y = 3x2, the x-axis and the line  
x = 1 is rotated through one revolution about the x-axis.

 3 Find the volume of the solid formed when the area between the curve y x=  and the x-axis from 
x = 1 to x = 4 is rotated through one revolution about the x-axis.

 4 Find the volume of the solid formed when the area enclosed by the x-axis, the straight line  
y = 2x + 1 and the lines x = 2 and x = 3 is rotated through one revolution about the x-axis.

 5 Find the volume of the solid formed by rotating about the x-axis through one revolution, the area 

between the curve y
x
1=  and the x-axis from

a x = 1 to x = 2, b x = 2 to x = 3.

 6 Find the volume of the solid formed when the area between y = x2 + 1 and the x-axis from x = –1 
to x = 2 is rotated through one revolution about the x-axis.

 7 Use integration to determine the volume of the cone formed by rotating the area enclosed by the 
line y = 0.5x, the x-axis and the line x = 6 through one revolution about the x-axis.

Show that your answer is consistent with the volume of a right cone of perpendicular height h and 

base radius r being 
r h
3

.
2π

 8 Find the volume of the solid formed when the area enclosed by y xsin=  and the x-axis for  
0 ≤ x ≤ π is rotated through one revolution about the x-axis.

 9 Find the volume of the solid formed when the area enclosed by y = sin x, and the x-axis for  
0 ≤ x ≤ π is rotated through one revolution about the x-axis.

 10 Find the volume of the solid formed by rotating the area enclosed between y = x2 and y = x 
through one revolution about the x-axis.

 11 Find the volume of the solid formed by rotating the area enclosed between the curves y = 0.125x2 
and y x=  through one revolution about the x-axis.

 12 Find the volume of the solid formed when the area enclosed between the curves

 y = 3 cos x and y = cos x, from x
2

= − π
 to x

2
,= π

is rotated through one revolution about the x-axis.
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 13 By considering the rotation of the area enclosed between y r x2 2= −  
 and the x-axis use calculus to determine the formula for the volume 
of a sphere of radius r.

 14 The diagram on the right shows a straight line passing through  
(0, 0) and (h, r). By considering the rotation of the area between 
this line and the x-axis for 0 ≤ x ≤ h determine the formula for the 
volume of a right cone of perpendicular height h and base radius r.

 15 Find the volume of the solid formed when the area lying in the first quadrant and enclosed  
by y = x2, the line y = 2 and the y-axis, is rotated through one revolution about the y-axis.

 16 Use calculus to determine the exact volume of the solid formed when the area between y = x 5   
and the y-axis, from y = 1 to y = 2, is rotated through 360° about the y-axis.

Check your answer using the fact that a right cone of perpendicular height h and base radius r has 

a volume given by 
r h
3

.
2π

 17 The diagram on the right shows the cross-section of  
a bowl made by rotating about the y-axis that part of the 
curve y = x2 - 3 that lies between the x-axis and the line 
y = 12. Neglecting the thickness of the material determine 
the capacity of the bowl if on each axis 1 unit represents 
1 centimetre.

 18 A machine component is modelled on computer by rotating for one revolution about the x-axis 
the area in the first quadrant enclosed by the x-axis for 0 ≤ x ≤ 1, y x ,=  y x 1= −  and x = 4. 
Determine the volume of the solid so formed.

 19 The team designing the nose cone of a small space probe are considering two possibilities.  

In one possibility the area between y
xsin

2
=  and the x-axis, from x = 0 to x

2
,= π
 is rotated  

one revolution about the x-axis to give the desired shape.  

The other possibility rotates the area between y
x

2
=

π
 and the x-axis from x = 0 to x

2
= π

  

one revolution about the x-axis to give the desired shape.

If one unit on each axis is 1 metre determine the exact volume of each design.

y

x

= −y r x2 2

y

x

(h, r)

(0, 0)

y

x
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 20 A ‘paraboloid’ is formed by revolving a parabola, y = kx2, about its axis of symmetry. The 
paraboloid is bounded by a plane cutting the axis of symmetry perpendicularly at the point 
(0, 20). The intersection of this plane and the paraboloid is a circle of radius 4 units.  
Determine the volume of the paraboloid.

 21 Area made with the x-axis, rotated about the y-axis

By considering the rotation of a small rectangle  
of thickness δx, height y and located a distance x 
from the y-axis, find a formula involving a 
definite integral for the volume of the solid 
formed by rotating the shaded area shown in 
the diagram one revolution about the y-axis.

Hence determine the volume of the solids 
obtained by rotating each of the following 
shaded areas about the y-axis.

a  b 

 22 Area made with the y-axis, rotated about the x-axis

By considering the rotation of a small rectangle of  
thickness δy, length x and located a distance y from 
the x-axis, find a formula involving a definite integral 
for the volume of the solid formed by rotating the  
shaded area shown in the diagram one revolution 
about the x-axis.

Hence determine the volume of the solids obtained by 
rotating each of the following shaded areas about the 
x-axis.

a  b 

y

x

y = f (x)

δx

x
ba

y

y

x

y = x2

1 2

y

x

y x= +1

1 4

a

y

b

x

x

y

δy

1 2

y

x

1

2

y
x

= 1

y

x

1

2

1 2

y = 2x
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Numerical integration
Although, at this stage of the course, we are now able to integrate many functions using suitable 
substitutions, partial fractions or just with our knowledge of antidifferentiation, it would be quite 
wrong to assume that we are now able to algebraically integrate any function we might be given. 
Consider, for example,

x dxln  ,∫     e x dxx sin ,∫     e dxx .
2

∫
The first two of these can in fact be reasonably easily integrated using a method called integration 
by parts, which features as an extension activity at the end of this chapter. However not all functions 
can be algebraically integrated and the third example above is one such case. Faced with the task of 
determining a definte integral for such a function, we can fall back on the basic definition of integration 
as the limit of a sum and obtain an approximate answer numerically. Hence the title of this section, 
numerical integration.

Asked to evaluate e dxx ,
0

2 2

∫  for example, our calculator uses  

such a numerical method to determine an answer.

Suppose we want to determine f x dx
a

b
( ) ,∫  and f (x)  

is not easily integrated algebraically.

We could divide the area under y = f (x), from x = a 
to x = b, into a number of equal width trapezoidal 
strips and sum the areas.

The diagram on the right shows 4 such strips.

Area = 
y y y y y y y y

h
2 2 2 2

0 1 1 2 2 3 3 4+
+

+
+

+
+

+





 = y y y y y
1
2

[ 2 2 2 ]0 1 2 3 4+ + + +h

For the general case, with n strips, this trapezoidal approach gives the trapezium rule, or 
trapezoidal rule:

f x dx
a

b
( )∫  ≈ y y y y yn n

1
2

[ 2 2     2 ]0 1 2 –1+ + + … + +h

where y0 = f (x0) = f (a),  yn = f (xn) = f (b)  and  h = 
b a

n
.

−

Another method is to model the top of each strip as being parabolic in shape. Using an even number of 
such strips this gives Simpson’s rule:

 f x dx
a

b
( )∫  ≈ + + + + + … + + +− −

1
3

[ 4 2 4 2     2 4 ]0 1 2 3 4 2 1y y y y y y y yn n nh

∫ e dx

16.45262777

x

0

2 2

y

x

h h h h

x0 x1 x2 x3 x4

y0 y1 y2 y3 y4

y = f (x)

x 
= 

b

x 
= 

a

WS

Trapezoidal rule
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Applying the trapezium rule, with n = 4, to estimate e dxx :
0

2 2

∫
 e dxx

0

2 2

∫  ≈ 
1
2

 × 0.5 × [y0 + 2y1 + 2y2 + 2y3 + y4]  = =

= = =

with , ,

, , .
0

0
1

0.5

2
1

3
1.5

4
2

2 2

2 2 2

y e y e

y e y e y e ≈ 20.64

Using Simpson’s rule:

 e dxx

0

2 2

∫  ≈ 
1
3

 × 0.5 × [y0 + 4y1 + 2y2 + 4y3 + y4]

 ≈ 17.35

Neither of the above estimates are particularly close to the calculator value given on the previous page, 
but then we have only used four strips. If instead we considered twenty strips, and used a computer 
spreadsheet to assist us:

A B C D E F G H I

1 x y

2 a 0 0 0 1

3 b 2 1 0.1 1.01005017

4 n 20 2 0.2 1.04081077

5 h 0.1 3 0.3 1.09417428

6 4 0.4 1.17351087

7 5 0.5 1.28402542

8 6 0.6 1.43332941

9 7 0.7 1.63231622

10 8 0.8 1.89648088

11 9 0.9 2.24790799

12 10 1 2.71828183

13 11 1.1 3.35348465

14 12 1.2 4.22069582

15 13 1.3 5.41948071

16 14 1.4 7.09932707

17 15 1.5 9.48773584

18 16 1.6 12.9358173

19 17 1.7 17.9933096

20 18 1.8 25.5337217

21 19 1.9 36.9660528 By Trapezium Rule 16.6339588

22 20 2 54.59815 By Simpson's Rule 16.4552084

Use a computer spreadsheet to estimate definite integrals, using the trapezium rule and Simpson’s rule, for 
other functions. Then compare your approximation to that given by your calculator.

Are there any online calculators for the trapezium rule (trapezoidal rule) and Simpson’s rule? Investigate.

The trapezium rule and Simpson’s rule are not the only rules available for numerical integration. Do some 
research on the internet to investigate the midpoint rule, the Newton-Cotes rules and others.
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Extension: Integration by parts

According to the product rule 
d
dx

uv( )  = v
du
dx

u
dv
dx

.+

Integrating with respect to x: uv = v
du
dx

dx u
dv
dx

dx∫ ∫+

Rearranging gives u
dv
dx

dx∫  = uv v
du
dx

dx∫−

This is the formula for integration by parts.

EXAMPLE 

Use integration by parts to determine xe dxx .∫
Solution
Let u = x   and 

dv
dx

 = ex

then 
du
dx

 = 1   and  v = ex

Using u
dv
dx

dx∫  = uv – v
du
dx

dx∫
\ xe dxx∫  = xex – e dxx (1)∫
 = xex - ex + c

Note that when determining v from 
dv
dx

 we said v = ex. What about the constant? Would our 

answer have been different had we used v = ex + k?

Exercise

Use integration by parts to determine each of the following integrals.

 1 x x dxsin∫  2 x x dxcos∫  3 x x dx3 sin 2∫  4 xe dxx2∫
 5 x x dxln2∫  6 x x dx( 2)5∫ +  7 x x dx2 1∫ +  8 x e dxx2∫
 9 x x dxsin2∫  10 x e dxx2 3 2

∫
Now try the following ‘sneaky’ ones, again using integration by parts.

11 x dxln∫  (Yes it can be done by parts.) 12 e x dxx sin∫  13 e x dxx cos 2∫
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Miscellaneous exercise nine
This miscellaneous exercise may include questions involving the work of this chapter, the work 
of any previous chapters in this unit, and the ideas mentioned in the Preliminary work section 
at the beginning of this unit.

For each of questions 1 to 8 find an expression for 
dy
dx

.

 1 y = (2x + 1)3 2 y = 4 cos 3x + 3 sin 4x

 3 y = 
x

x
sin4

 4 y = 
x
x

1 2sin
1 cos
+
+

 5 y = 
x

x
sin 2

1 sin 2+
 6 5xy + 2y3 = 3x2 - 7

 7 x = 3t2 - 5t,  y = 3 - 4t3  8 x cos y = y sin x

 9 Find the constants a and b given that for {x ∈ ¡: x ≠ ±1}

 
a

x
b

x1 1−
+

+
 = 

x
x
7 5

1
.2

−
−

Hence find an expression for 
x

x
dx

7 5
1

.2∫ −
−

 10 Determine each of the following indefinite integrals.

a x dx4 cos8∫  b x x dx2 (3 )2 5∫ +  c x x dx(2 3 ) 33∫ − +

d x x dxsin 2 cos 25∫   e x
dxsin

2
2∫  f x

dxcos
2

3∫
g x dxsin 23∫  h x x dx6 sin 2 cos∫  i x x dx6 cos 2 sin∫

 11 Find the equation of the tangent to

a x2 + xy = 1 + y2 at the point (2, 3).

b x3 + y3 = 35 at the point (2, 3).

 12 Find the volume of the solid formed by rotating the area enclosed between the curve y
x

1=  and 

the x-axis, from x = 1 to x = 4, through one revolution about the x-axis.
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 13 The length of a particular rectangle is four times its width and this ratio is maintained as the  
width is increased at 2 mm/s. Find the rate of increase in the area of the rectangle when  
the width is 15 cm.

 14 The area of the quarter circle shown shaded on the right is given  

by x dx25 .2

0

5

∫ −

Use the substitution x = 5 sin u to evaluate this definite integral 
exactly and show that your answer is consistent with the area of 
a circle of radius r being πr2.

 15 Showing full algebraic reasoning, determine the following definite integral giving your answer 
as an exact value.

 x x
x x

dx
3 5 1

( 2)( 1)

2

21

2

∫ + −
+ +

 16 The diagram shows a funnel in the shape of an upturned cone  
of height 20 cm and ‘base’ radius 5 cm.

If water flows out of the funnel at 5 cm3/s, how fast is the  
water level falling at the instant that the water in the cone  
has a depth of 10 cm?

 17 The diagram shows a person of height 1.95 m standing  
24 metres due east of a lamp post that holds a light that 
is 4.2 m above the ground.

If the person runs at 5 m/s, find how fast the length of 
the person’s shadow is changing 2 seconds later if the 
direction in which the person runs is

a due east,

b due west,

c due north.

y

x5

5 y x= −25 2

5 cm

20 cm
depth of

water in cone

North

24 m

North




